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Neural Field (NF) [13, 15, 19] research has garnered increasing attention, leading to remarkable progress in 3D
Shape Modeling. Neural Fields serve as invaluable tools for succinctly representing complex scenes [25]. Consider,
for instance, a scenario where a user wishes to capture and distribute a reconstructed version of a 3D environment,
intended for utilization by others in virtual reality headsets. In this context, sharing a compact NF like NeRF [7,
13] is much more memory efficient compared to bulky explicit representations like meshes and point clouds. This
remarkable compressive capability has ignited a fascination with NFs for 3D shape modeling. However, it is worth
noting that some important challenges still exist. While NFs represent the input signal (like a 3D shape) quite well, as
noted by recent works [11, 12, 26], they are often not faithful, failing to represent the underlying geometric properties
like derivatives of the signal accurately. This limits their usage in downstream applications like physical simulation
and rendering. Furthermore, obtaining useful high-fidelity reconstructions from sparse observations of the scene
is still an elusive goal. To produce such reconstructions, we would need generalizable priors that require careful
design. Lastly, modeling dynamic 3D scenes, especially from monocular videos is still largely unsolved, with past
works making strong assumptions like human-centric scenes. Thus, my research endeavors center around the pursuit
of faithful and generalizable representation techniques for dynamic scenes using Neural Fields.

1. My Prior Work
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Figure 1: Differential operators of HNFs. Even accurate
HNFs may provide inaccurate differential operators, as il-
lustrated through the SDF of a circle in 2D. Note the noisy
Autodiff operators and our more accurate approach.

Faithfulness. Recently, Hybrid Neural Fields (HNFs)
[6, 14, 16, 21] like Instant NGP have gained focus as an
efficient technique for signal representation (like learn-
ing SDFs). These models typically consist of a small
neural network along with a data structure that stores lo-
cal features about the shape. The representation power
of the neural network is distributed to the features in
the data structure, allowing a smaller network with in-
creased performance and similar quality of results. In
order for HNFs to qualify as first-class shape represen-
tations, we should be able to utilize them directly in ap-
plications like rendering and physical simulation. These
applications require accurate spatial differential opera-
tors (like gradient and laplacian) of the HNF which we
found to be rife with high-frequency noise, as also high-
lighted recently by Neuralangelo [11] and illustrated in
Figure 1. We reason that this is because HNFs contain
small magnitudes of high-frequency noise, which gets
accentuated when we compute spatial derivatives of the
HNF using automatic differentiation (Autodiff).

To mitigate this, we propose to apply Autodiff to a local low-order polynomial approximation of the signal.
Approximating the signal locally by a low-order polynomial gets rid of high-frequency noise while preserving fine-
grained details. Our operator can be applied post hoc to any given pre-trained HNF. Apart from this post hoc operator,
we also propose a fine-tuning approach that aligns the Autodiff gradients of the network with our post hoc operator.
We showed how our approaches result in more accurate gradients and higher-order differential operators for any
given pre-trained neural field compared to vanilla Autodiff or even finite-difference-based methods over a variety of
shapes and provide benefits in applications like rendering, collision simulation, and solving PDEs using HNFs.1

2. Future Plans and Research Directions
Faithful NFs enable us to focus on more specific challenges of representing dynamic scenes and generalizability,
which I plan to tackle in my ongoing and future projects. While scene representation using NFs has made a lot of
progress in the past few years, it still struggles with generalization and modeling dynamic scenes with deformable
objects. For instance, say we are recording a monocular video of a busy crosswalk in an urban setting. Such scenes
would contain multiple moving objects, novel types of objects as well as unconstrained and complex movements, as
shown in Figure 2. Existing methods struggle to model such dynamic scenes without strong assumptions typically on
object categories that may not generalize in the wild. In my research, I aim to address these challenges with general
priors that are capable of handling such scenes with general priors in a category-agnostic fashion.

1 This work is currently under submission at ICLR 2024.
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Figure 2: Research Thrusts. Dynamic Scenes (Left): Reconstructing monocular dynamic scenes with multiple
moving objects (shaded in different colors), with unconstrained motions (arrows denote motions), and generalizing
to novel object types (unseen trash can shape, circled) is still largely unsolved. Frames from video of a busy crosswalk.
Generalization (Right): While past works can generalize well enough for static scenes to get a coarse reconstruction,
they miss fine-grained details and glue distinct objects together (cars glued to the road). Figure from NKSR [10].

Dynamic Scenes. Reconstruction of dynamic 3D scenes frommonocular videos is an extremely challenging task due
to the under-constrained nature of the problem and occlusions in the scenes. Existing methods ranging from classical
Non-Rigid Surface-from-Motion [4, 9, 22] to more recent NF-based methods [5, 18, 20, 28], rely on accurate tracking
of 3D points in 2D, to learn a 3D deformation field between frames. However, in order to compute deformation
fields, they either make strong assumptions about the deformable objects in the scene, such as assuming humanoid
or quadruped structures [20, 28], or assume more supervision, like accurate depth maps [5]. This limits their usage
on in-the-wild videos.

In my ongoing work, I am developing methods that assume general priors that are agnostic to object categories
and still capable of providing 3D reconstructions. Recently, Omnimotion [23] has addressed this issue in part, us-
ing general priors with monocular videos to learn a global quasi-3D NF representation of the scene that provides
occlusion-aware tracks. However, it does not assume access to camera poses, making geometry extraction difficult.
Recent work [29] has shown that cues from the stationary background and an initial monocular depth can be used
to compute a consistent depth field for dynamic scenes up to a global scaling factor. But [29] relies on foreground
masks that can be inaccurate in case of occlusions. Currently, I am working on integrating occlusion-aware back-
ground masks from Omnimotion’s tracks with monocular depth priors to learn a temporally consistent depth field.
The resulting representation will give us a globally consistent depth field and geometry in visible regions, enabling
applications like video editing and generalizing novel view synthesis to a wider range of views.

Generalization. Completion of non-visible regions or reconstruction from sparse observations using NFs requires
some prior over 3D shapes that generative models can provide. However, 3D generative models, suffer from poor
generalization capabilities, stemming from data scarcity. While self-supervised [8] and unsupervised [27] methods
exist, they make strong assumptions about input data used for training such as points being sampled uniformly from
the shapes’ surface, availability of full-view point clouds, and so on. However, these assumptions are too strong to
hold in practice leading to poor generalization results for unseen sampling densities and categories. While recent
works like NKF [24] and NKSR [10] attempt to solve this problem, they are focused solely on reconstruction at
the local scale (on the level of patches) [10] or global scale (on the level of the object or scene) [24]. Local-scale
reconstruction is sensitive to incomplete sampling (common for example, in LiDAR scans of scenes with occlusions),
whereas a completely global approach is sensitive to noisy sampling. Furthermore, current scene reconstruction
approaches often group semantically distinct objects together as one surface. This can be a challenge for downstream
applications like robotic manipulation where clean geometry is necessary for reasoning. In future work, I aim to
explore multi-scale approaches for generalizable reconstruction that incorporate priors from past videos [17] of
object interactions to reason about scene compositionality and surface separation.

3. Conclusion
With improvements in the quality of NFs as a scene representation, we are seeing a shift in how visual data is
represented, with NFs increasingly being used as first-class shape representations [1, 2, 3]. My goal is to explore
the properties of NFs to ensure that we can fully leverage them for visual data representation and understanding and
address their limitations. More broadly, I believe that there is a wealth of general priors that can be utilized to develop
a more holistic understanding of visual data. While my focus is primarily on 3D data representation using Neural
Fields, I hope to produce studies that offer insights that are generally applicable for visual understanding and can be
utilized for developing any system that seeks to utilize general priors in a self-supervised and label-efficient fashion.
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